當(dāng)前位置:中美貿(mào)易網(wǎng) > 技術(shù)中心 > 所有分類
(Electronic Cigarette),是一種以電池供電的驅(qū)動霧化器,可加熱霧化油艙中的電子液體(俗稱煙油、電子果汁、E-liquid或E-juice;煙油含有1,2-丙二醇、植物甘油、食用香精或尼古?。?。雖然有研究表明長期吸食會導(dǎo)致氣道炎癥、嗜中性粒細胞增多、氣道重塑和肺氣腫(Gotts et al, 2019),暴露可能導(dǎo)致DNA損傷、氧化應(yīng)激誘導(dǎo)的細胞死亡和核因子κB (NF-κB)介導(dǎo)的急性肺部炎癥(Gotts et al,2019;Garcia-Arcos et al,2016;Ma et al,2021),但對各個成分對呼吸系統(tǒng)影響的研究較少,因此自問世以來一直備受爭議。
2023年4月韓國毒理學(xué)研究所空氣危險因素吸入毒理學(xué)中心Sung-Hoon Yoon 等在Journal of Hazardous Materials 雜志上發(fā)表了一篇名為Comparative study of lung toxicity of E-cigarette ingredients to investigate E-cigarette or vaping product associated lung injury的文章,研究了產(chǎn)品中的尼古丁和四氫酚等個別成分對呼吸系統(tǒng)的影響。實驗中分別在小鼠氣管內(nèi)注射丙二醇(PG)、植物甘油(VG)、醋酸酯(VEA)或尼古丁兩周。在PG和VEA處理的小鼠模型中發(fā)現(xiàn)了細胞學(xué)和組織學(xué)變化,這些小鼠表現(xiàn)出與使用相關(guān)肺損傷(EVALI)或使用者癥狀相關(guān)的病理生理變化。與潛在的人體暴露情況相比,雖然VEA暴露條件與中VEA含量的劑量當(dāng)量相似,但PG條件約為使用者每日攝入PG劑量當(dāng)量的47-137倍。這些結(jié)果表明,VEA暴露比PG暴露更容易引起與EVALI相關(guān)的問題。轉(zhuǎn)錄組學(xué)分析顯示,PG暴露通過AKT信號通路和M2巨噬細胞極化與纖維化肺損傷相關(guān),VEA暴露通過絲裂原激活的蛋白激酶信號通路與哮喘性氣道炎癥相關(guān)。
研究中,作者團隊使用英國EMMS公司用力肺功能檢測系統(tǒng)(eSpira™ Forced Manoeuvers System)對成分暴露小鼠各實驗組進行肺功能檢測,結(jié)果顯示暴露于PG組小鼠通氣功能顯著減低(FEV25/FVC和FEV50/FVC);與對照組相比,PG和VEA組小鼠的肺吸氣量IC均有所增加;而PG組和VEA組的呼氣峰流量(PEF)和肺吸氣量(IC)則無顯著差異。
Lung function measurement. Lung function measurement, including PEF, FEV25/FVC, and FEV50/FVC following the groups of (A) PG or (B) VEA exposure. The results are expressed as the mean for each group. # P<0.05 vs.each vehicle control.
英國EMMS公司是一家專注于肺功能研究領(lǐng)域的開發(fā)生產(chǎn)商,可提供最完善的呼吸功能研究測試儀器,并且在In-Vivo,In-Vitro,Pulmonary,Cardiovascular具有20多年以上相關(guān)技術(shù)經(jīng)驗。EMMS的產(chǎn)品已遍及國內(nèi)外高校,藥廠以及研究所,其中eSpira™用力肺功能檢測系統(tǒng)是其代表之一。
產(chǎn)品介紹
eSpira™用力肺功能檢測系統(tǒng)(eSpira™ Forced Manoeuvers System)是EMMS用于檢測與肺功能相關(guān)的全部生理數(shù)據(jù)的大型系統(tǒng),可對麻醉動物進行一系列成組實驗的數(shù)據(jù)自動分析檢測,包括用力肺活量相關(guān)數(shù)據(jù)的測試。該系統(tǒng)可用于小鼠、大鼠/豚鼠以及其他大型動物。廣泛應(yīng)用于COPD、廣泛應(yīng)用于慢阻肺、肺氣腫、肺纖維化、矽肺、急性肺損傷、機械通氣型肺損傷等各種急慢性呼吸系統(tǒng)疾病的臨床前研究。
實驗時,動物需麻醉并施以氣管切開術(shù)。與人肺功能檢測相類似,eSpira™系統(tǒng)提供與人類肺功能指標(biāo)一致的各種生理指標(biāo)參數(shù)。系統(tǒng)高度自動化并提供豐富的圖標(biāo)供分析研究使用,軟件可自定義多種數(shù)據(jù)表格和圖形形式,并可查看輸出原始數(shù)據(jù),并輸出常用的 統(tǒng)計分析數(shù)據(jù)報告,還可以根據(jù)研究者實驗需求靈活設(shè)置Protocal,簡化實驗流程,提高實驗效率,另有電子簽名設(shè)置可保證實驗數(shù)據(jù)的安全性和真實性,符合GLP標(biāo)準(zhǔn)。
主要檢測參數(shù)
(1)可檢測參數(shù)包括但不限于:
用力呼氣量 / Forced Expiratory Volume (FEV)
肺總量 / Total Lung Capacity
用力肺活量 / Forced Vital Capacity
呼氣流量 / Peak Expiratory Flow
呼氣中段流量 / Maximum Mid Expiratory Flow
準(zhǔn)靜態(tài)壓力容積曲線 / Quasistatic Pressure Volume Curves
功能殘氣量 / FRC
阻力/順應(yīng)性 / Resistance/Compliance
(2)詳細參數(shù)列表
Name Units Description IC ml Inspiratory Capacity, volume inspired during slow inspiration FVC ml Forced Vital Capacity, volume expired during fast expiration ERV ml Expiratory Reserve Volume, FVC-IC FEV25 ml Volume expired in first 25 ms of fast expiration FEV50 ml Volume expired in first 50 ms of fast expiration FEV75 ml Volume expired in first 75 ms of fast expiration FEV100 ml Volume expired in first 100 ms of fast expiration FEV200 ml Volume expired in first 200 ms of fast expiration FEV400 ml Volume expired in first 400 ms of fast expiration FEVPEF ml Volume expired at peak expiratory flow tI s Inspiration time tE s Expiration time Pef ml/s Peak expiratory flow MMEF ml/s Mean Mid Expiratory Flow, average flow between 25% - 75% FVC FEF75 ml/s Forced Expiratory Flow at 75 % of FVC (25 % expired) FEF50 ml/s Forced Expiratory Flow at 50 % of FVC FEF25 ml/s Forced Expiratory Flow at 25 % of FVC (75 % expired) FEF10 ml/s Forced Expiratory Flow at 10 % of FVC (90 % expired) dVPEF % % of FVC remaining at PEF HoldTime s Measured breath hold time pInsp cmH2O Pressure difference between start and end of inspiration pExp cmH2O Pressure difference between start and end of expiration Offset ml/s If the auto-detect zero flow level is enabled, this outputs the offset from calibrated flow zero to calculated flow zero. If zuto-zero detect is disabled, then this output is 0. FEVUser1 ml FEV at user-defined output point 1. FEVUser2 ml FEV at user-defined output point 2. FEVUser3 ml FEV at user-defined output point 3. FEVUser4 ml FEV at user-defined output point 4. FEVUser5 ml FEV at user-defined output point 5. FRC ml Functional Residual Capacity DeltaP cmH2O Pressure difference DeltaV ml Volume difference Pb mmHg Barometric Pressure, as set in Control Options Tol % Percent tolerance between accepted breaths DeadSp ml Amount of dead space, as set in manoeuvre options IC ml Inspiratory Capacity, volume inspired during slow inspiration FVC ml Forced Vital Capacity, volume expired during fast expiration FRC ml Functional Residual Capacity, as entered in manoeuvre options ERV ml Expiratory reserve volume, FVC - IC TLC ml Total Lung Capacity, FRC + IC RV ml Residual Volume Pfrc cmH2O Pressure at FRC Cmax ml/cmH2O Maximum compliance P_Cmax cmH2O Pressure at max compliance V_Cmax ml Volume at max compliance Cchord ml/cmH2O Chord compliance between 0-10 cmH2O Cfvc50 ml/cmH2O Compliance at 50 % VC C_P0 ml/cmH2O Compliance at 0 pressure Pmax cmH2O Max pressure Pmin cmH2O Min pressure tHold s Breath hold time
產(chǎn)品特點
應(yīng)用舉例
上圖為利用eSpira™系統(tǒng)在慢性哮喘小鼠模型上獲取的數(shù)據(jù)。小鼠通過卵清蛋白(OVA)激發(fā)致敏,對照組只注射明礬和緩沖液。在次激發(fā)24小時后進行肺功能檢測。如圖,F(xiàn)VC降低了49%,F(xiàn)EV50降低了46%。數(shù)據(jù)表明eSpira™系統(tǒng)用于小鼠哮喘模型,可以有效的檢測肺功能的改變。
參考文獻
[1]. Yoon, S., et al., Comparative study of lung toxicity of E-cigarette ingredients to investigate E-cigarette or vaping product associated lung injury. Journal of Hazardous Materials, 2023. 445: p. 130454.
[2].Wang, J., et al., Macrophage-derived GPNMB trapped by fibrotic extracellular matrix promotes pulmonary fibrosis. Communications Biology, 2023. 6(1): p. 136.
[3].Wang, M., et al., Blockade of phosphotyrosine pathways suggesting SH2 superbinder as a novel therapy for pulmonary fibrosis. Theranostics, 2022. 12(10): p. 4513.
[4].Li, Q., et al., Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clinical and Translational Medicine, 2022. 12(10): p. e1036.
[5].Seitz, A.M., et al., Forces at the Anterior Meniscus Attachments Strongly Increase Under Dynamic Knee Joint Loading. The American Journal of Sports Medicine, 2021. 49(4): p. 994-1004.
[6].Zhang, M., et al., Quantitative evaluation of lung injury caused by PM2. 5 using hyperpolarized gas magnetic resonance. Magnetic Resonance in Medicine, 2020. 84(2): p. 569-578.
[7].Chen, K., et al., Early peritoneal dialysis ameliorates blast lung injury by alleviating pulmonary edema and inflammation. Shock, 2020. 53(1): p. 95-102.
[8].Carrington, R., et al., C101 IPF: CLINICAL STUDIES, THERAPEUTICS, AND MORE II: Nintedanib Attenuates Lung Function Decline In A Bleomycin-Induced Rat Model Of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017. 195.
[9].Chung, K.F., et al., Inactivation, clearance, and functional effects of lung-instilled short and long silver nanowires in rats. ACS nano, 2017. 11(3): p. 2652-2664.
[10]. Klar, J., et al., Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease. Journal of medical genetics, 2011. 48(10): p. 705-709.
您想了解更多詳細資料嗎?
請與我們聯(lián)系:
TEL:,
QQ:
微信:yuyanbio
Mail:yuyanbio
!